Given an array consisting of n integers, find the contiguous subarray of given length k that has the maximum average value. And you need to output the maximum average value.
Example 1:
1 2 3
Input: [1,12,-5,-6,50,3], k = 4 Output: 12.75 Explanation: Maximum average is (12-5-6+50)/4 = 51/4 = 12.75
Note:
1 <= k <= n <= 30,000.
Elements of the given array will be in the range [-10,000, 10,000].
Given an integer array, you need to find one continuous subarray that if you only sort this subarray in ascending order, then the whole array will be sorted in ascending order, too.
You need to find the shortest such subarray and output its length.
Example 1:
1 2 3
Input: [2, 6, 4, 8, 10, 9, 15] Output: 5 Explanation: You need to sort [6, 4, 8, 10, 9] in ascending order to make the whole array sorted in ascending order.
Note:
Then length of the input array is in range [1, 10,000].
The input array may contain duplicates, so ascending order here means <=.
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
1 2
Input: flowerbed = [1,0,0,0,1], n = 1 Output: True
Example 2:
1 2
Input: flowerbed = [1,0,0,0,1], n = 2 Output: False
Note:
The input array won’t violate no-adjacent-flowers rule.
The input array size is in the range of [1, 20000].
n is a non-negative integer which won’t exceed the input array size.
In MATLAB, there is a very useful function called ‘reshape’, which can reshape a matrix into a new one with different size but keep its original data.
You’re given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively.
The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.
If the ‘reshape’ operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.
Example 1:
1 2 3 4 5 6 7 8
Input: nums = [[1,2], [3,4]] r = 1, c = 4 Output: [[1,2,3,4]] Explanation:The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.
Example 2:
1 2 3 4 5 6 7 8 9
Input: nums = [[1,2], [3,4]] r = 2, c = 4 Output: [[1,2], [3,4]] Explanation:There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.
Note:
The height and width of the given matrix is in range [1, 100].
Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), …, (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.
Example 1:
1 2 3 4
Input: [1,4,3,2]
Output: 4 Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).
Note:
n is a positive integer, which is in the range of [1, 10000].
All the integers in the array will be in the range of [-10000, 10000].
Given an array of integers and an integer k, you need to find the number of unique k-diff pairs in the array. Here a k-diff pair is defined as an integer pair (i, j), where i and j are both numbers in the array and their absolute difference is k.
Example 1:
1 2 3
Input: [3, 1, 4, 1, 5], k = 2 Output: 2 Explanation: There are two 2-diff pairs in the array, (1, 3) and (3, 5).Although we have two 1s in the input, we should only return the number of unique pairs.
Example 2:
1 2 3
Input:[1, 2, 3, 4, 5], k = 1 Output: 4 Explanation: There are four 1-diff pairs in the array, (1, 2), (2, 3), (3, 4) and (4, 5).
Example 3:
1 2 3
Input: [1, 3, 1, 5, 4], k = 0 Output: 1 Explanation: There is one 0-diff pair in the array, (1, 1).
Note:
The pairs (i, j) and (j, i) count as the same pair.
The length of the array won’t exceed 10,000.
All the integers in the given input belong to the range: [-1e7, 1e7].
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
1 2
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), for N > 1.
Given a binary array, find the maximum number of consecutive 1s in this array.
Example 1:
1 2 3 4
Input: [1,1,0,1,1,1] Output: 3 Explanation: The first two digits or the last three digits are consecutive 1s. The maximum number of consecutive 1s is 3.
Note:
The input array will only contain 0 and 1.
The length of input array is a positive integer and will not exceed 10,000