0%

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

1
2
3
4
5
6
7
8
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
阅读全文 »

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

img

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
阅读全文 »

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

img
Above is a 7 x 3 grid. How many possible unique paths are there?

Example 1:

1
2
3
4
5
6
7
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

1
2
Input: m = 7, n = 3
Output: 28

Constraints:

  • 1 <= m, n <= 100
  • It’s guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.
阅读全文 »

Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.

Example:

1
2
3
4
5
6
7
Input: 3
Output:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
阅读全文 »

Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.

Example 1:

1
2
3
4
5
6
7
Input:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
Output: [1,2,3,6,9,8,7,4,5]

Example 2:

1
2
3
4
5
6
7
Input:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10,11,12]
]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]
阅读全文 »

Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).

You may assume that the intervals were initially sorted according to their start times.

Example 1:

1
2
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]

Example 2:

1
2
3
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].

NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.

阅读全文 »

Given a collection of intervals, merge all overlapping intervals.

Example 1:

1
2
3
Input: [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlaps, merge them into [1,6].

Example 2:

1
2
3
Input: [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.

NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.

阅读全文 »

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

Example 1:

1
2
3
Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.

Example 2:

1
2
3
Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.

Constraints:

  • 1 <= nums.length <= 3 * 10^4
  • 0 <= nums[i][j] <= 10^5
阅读全文 »

You are given an n x n 2D matrix representing an image.

Rotate the image by 90 degrees (clockwise).

Note:

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
Given input matrix = 
[
[1,2,3],
[4,5,6],
[7,8,9]
],

rotate the input matrix in-place such that it becomes:
[
[7,4,1],
[8,5,2],
[9,6,3]
]

Example 2:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Given input matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],

rotate the input matrix in-place such that it becomes:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
阅读全文 »

Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

The solution set must not contain duplicate quadruplets.

Example:

1
2
3
4
5
6
7
8
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.

A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
阅读全文 »