0%

Given a linked list, reverse the nodes of a linked list k at a time and return its modified list.

k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is.

Example:

Given this linked list: 1->2->3->4->5

For k = 2, you should return: 2->1->4->3->5

For k = 3, you should return: 3->2->1->4->5

Note:

  • Only constant extra memory is allowed.
  • You may not alter the values in the list’s nodes, only nodes itself may be changed.
阅读全文 »

Reverse a linked list from position m to n. Do it in one-pass.

Note: 1 ≤ mn ≤ length of list.

Example:

1
2
Input: 1->2->3->4->5->NULL, m = 2, n = 4
Output: 1->4->3->2->5->NULL
阅读全文 »

Reverse a singly linked list.

Example:

1
2
Input: 1->2->3->4->5->NULL
Output: 5->4->3->2->1->NULL

Follow up:

A linked list can be reversed either iteratively or recursively. Could you implement both?

阅读全文 »

Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*'.

1
2
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).

The matching should cover the entire input string (not partial).

Note:

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like ? or *.

Example 1:

1
2
3
4
5
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

1
2
3
4
5
Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.

Example 3:

1
2
3
4
5
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.

Example 4:

1
2
3
4
5
Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".

Example 5:

1
2
3
4
Input:
s = "acdcb"
p = "a*c?b"
Output: false
阅读全文 »

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

Example:

1
2
3
4
5
6
7
Input: [1,1,2]
Output:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
阅读全文 »

Given a collection of distinct integers, return all possible permutations.

Example:

1
2
3
4
5
6
7
8
9
10
Input: [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
阅读全文 »

Implement pow(x, n), which calculates x raised to the power n (i.e. xn).

Example 1:

1
2
Input: x = 2.00000, n = 10
Output: 1024.00000

Example 2:

1
2
Input: x = 2.10000, n = 3
Output: 9.26100

Example 3:

1
2
3
Input: x = 2.00000, n = -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25

Constraints:

  • -100.0 < x < 100.0
  • -231 <= n <= 231-1
  • -104 <= xn <= 104
阅读全文 »

Validate if a given string can be interpreted as a decimal number.

Some examples:
"0" => true
" 0.1 " => true
"abc" => false
"1 a" => false
"2e10" => true
" -90e3 " => true
" 1e" => false
"e3" => false
" 6e-1" => true
" 99e2.5 " => false
"53.5e93" => true
" --6 " => false
"-+3" => false
"95a54e53" => false

Note: It is intended for the problem statement to be ambiguous. You should gather all requirements up front before implementing one. However, here is a list of characters that can be in a valid decimal number:

  • Numbers 0-9
  • Exponent - “e”
  • Positive/negative sign - “+”/“-“
  • Decimal point - “.”

Of course, the context of these characters also matters in the input.

Update (2015-02-10):
The signature of the C++ function had been updated. If you still see your function signature accepts a const char * argument, please click the reload button to reset your code definition.

阅读全文 »

Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'.

1
2
'.' Matches any single character.
'*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

Note:

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like . or *.

Example 1:

1
2
3
4
5
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

1
2
3
4
5
Input:
s = "aa"
p = "a*"
Output: true
Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".

Example 3:

1
2
3
4
5
Input:
s = "ab"
p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".

Example 4:

1
2
3
4
5
Input:
s = "aab"
p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".

Example 5:

1
2
3
4
Input:
s = "mississippi"
p = "mis*is*p*."
Output: false
阅读全文 »

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

1
2
3
4
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.

Example 2:

1
2
3
4
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.

Constraints:

  • 0 <= nums.length <= 100
  • 0 <= nums[i] <= 400
阅读全文 »