0%

Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

Example:
Given a binary tree

1
2
3
4
5
    1
/ \
2 3
/ \
4 5

Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].

Note: The length of path between two nodes is represented by the number of edges between them.

阅读全文 »

Given an n-ary tree, return the level order traversal of its nodes’ values.

Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

Example 1:

img

1
2
Input: root = [1,null,3,2,4,null,5,6]
Output: [[1],[3,2,4],[5,6]]

Example 2:

img

1
2
Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: [[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]

Constraints:

  • The height of the n-ary tree is less than or equal to 1000
  • The total number of nodes is between [0, 10^4]
阅读全文 »

Given a binary tree, return the zigzag level order traversal of its nodes’ values. (ie, from left to right, then right to left for the next level and alternate between).

For example:
Given binary tree [3,9,20,null,null,15,7],

1
2
3
4
5
  3
/ \
9 20
/ \
15 7

return its zigzag level order traversal as:

1
2
3
4
5
[
[3],
[20,9],
[15,7]
]
阅读全文 »

Given a binary tree, return the bottom-up level order traversal of its nodes’ values. (ie, from left to right, level by level from leaf to root).

For example:
Given binary tree [3,9,20,null,null,15,7],

1
2
3
4
5
  3
/ \
9 20
/ \
15 7

return its bottom-up level order traversal as:

1
2
3
4
5
[
[15,7],
[9,20],
[3]
]
阅读全文 »

Given a binary tree, return the level order traversal of its nodes’ values. (ie, from left to right, level by level).

For example:
Given binary tree [3,9,20,null,null,15,7],

1
2
3
4
5
  3
/ \
9 20
/ \
15 7

return its level order traversal as:

1
2
3
4
5
[
[3],
[9,20],
[15,7]
]
阅读全文 »

Given n, how many structurally unique BST’s (binary search trees) that store values 1 … n?

Example:

1
2
3
4
5
6
7
8
9
10
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

Constraints:

  • 1 <= n <= 19
阅读全文 »

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

1
2
3
4
5
6
    2
/ \
1 3

Input: [2,1,3]
Output: true

Example 2:

1
2
3
4
5
6
7
8
9
    5
/ \
1 4
/ \
3 6

Input: [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.
阅读全文 »

Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not.

You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Input: 
Tree 1 Tree 2
1 2
/ \ / \
3 2 1 3
/ \ \
5 4 7
Output:
Merged tree:
3
/ \
4 5
/ \ \
5 4 7

Note: The merging process must start from the root nodes of both trees.

阅读全文 »

Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one.

Note:

Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

Example 1:

1
2
Input: [2,2,3,2]
Output: 3

Example 2:

1
2
Input: [0,1,0,1,0,1,99]
Output: 99
阅读全文 »

简介

本文用AStar算法实现了关于8数码问题(也可以是n数码问题, n = i^2 - 1, i = 2,3,…). 关于8数码问题和AStar算法的描述参见网络. 这里仅给出java 实现.

阅读全文 »