0%

Leetcode 94 Binary Tree Inorder Traversal

Given the root of a binary tree, return the inorder traversal of its nodes’ values.

Example 1:

img

1
2
Input: root = [1,null,2,3]
Output: [1,3,2]

Example 2:

1
2
Input: root = []
Output: []

Example 3:

1
2
Input: root = [1]
Output: [1]

Example 4:

img

1
2
Input: root = [1,2]
Output: [2,1]

Example 5:

img

1
2
Input: root = [1,null,2]
Output: [1,2]

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

Follow up:

Recursive solution is trivial, could you do it iteratively?

1 递归

记得之前看到过这个非递归解法, 但是实在想不出来了😭😭

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
inorderTraversal(ans, root);
return ans;
}
private void inorderTraversal(List<Integer> ans, TreeNode root)
{
if(root == null)
return;
else
{
inorderTraversal(ans, root.left);
ans.add(root.val);
inorderTraversal(ans, root.right);
}
}
}

2 非递归

具体方法还是看代码吧. 感觉很难描述.

当初看解析的时候也看了半天才懂

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
Stack<TreeNode> stk = new Stack<>();
List<Integer> inorder = new ArrayList<>();
TreeNode p = root;
while(p != null || !stk.isEmpty())
{
while(p != null)
{
stk.push(p);
p = p.left;
}

p = stk.pop();
inorder.add(p.val);
p = p.right;
}
return inorder;
}
}