0%

Leetcode 40 Combination Sum II

Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

Each number in candidates may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

Example 1:

1
2
3
4
5
6
7
8
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]

Example 2:

1
2
3
4
5
6
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]

1 动态规划1

和leetcode39一样,只不过这一次对于最近加上的元素位于index j,后续的寻找要从j+1开始,这样就能避免一个index使用多次。

但是,这个方法只能保证相同下标的index不能使用多次,对于不同下标的相同值,仍需要排序去重。

example 1 中就有可能出现[1, 7]和[7, 1]两种解,因为candidates里有2个1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
auto vectors = getVectorsWithoutDuplication(candidates,target,-1);
for(auto& i : vectors)
sort(i.begin(), i.end());
sort(vectors.begin(), vectors.end());
auto end = unique(vectors.begin(), vectors.end());
return vector<vector<int>>(vectors.begin(), end);
}
vector<vector<int>> getVectorsWithoutDuplication(const vector<int>& candidates, int target,int begin_index)
{
vector<vector<int>> vectors;
if(target <= 0)
{
return vectors;
}
for(int i = begin_index + 1; i < candidates.size(); ++i)
{
auto vectorsEqualTarget_i = getVectorsWithoutDuplication(candidates, target - candidates[i], i);
if(target - candidates[i] == 0)
vectors.push_back(vector<int>({candidates[i]}));
for(auto& vc : vectorsEqualTarget_i)
{
vc.push_back(candidates[i]);
vectors.push_back(vc);
}
}
return vectors;
}
};

2 动态规划2

动态规划1重复的根本原因是因为,如果有两个index i > j,并且candidates[i] == candidates[j],所以所有的和为target-candidates[i]的集合与所有和为target-candidates[j]的集合相等。那么getVectorsWithoutDuplication(candidates, target - candidates[i], i) 一定是 getVectorsWithoutDuplication(candidates, target - candidates[j], j) 的子集!

这时只需要不计算j产生的所有和为target-candidates[j]的数组就可以了(candidates[i] == candidates[i - 1])。

但是,要注意条件i > begin_index + 1 ,如果没有这个条件,会落下{1,1,6,7} target=8中{1,1,6}的解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {

public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(),candidates.end());
auto vectors = getVectorsWithoutDuplication(candidates,target,-1);

return vectors;
}
vector<vector<int>> getVectorsWithoutDuplication(const vector<int>& candidates, int target,int begin_index)
{
vector<vector<int>> vectors;
if(target <= 0)
{
return vectors;
}
for(int i = begin_index + 1; i < candidates.size(); ++i)
{
if(i > begin_index + 1 && candidates[i] == candidates[i - 1]) continue;
auto vectorsEqualTarget_i = getVectorsWithoutDuplication(candidates, target - candidates[i], i);
if(target - candidates[i] == 0)
vectors.push_back(vector<int>({candidates[i]}));
for(auto& vc : vectorsEqualTarget_i)
{
vc.push_back(candidates[i]);
vectors.push_back(vc);
}
}
return vectors;
}
};